pip install randomuser
API RandomUser - Pandas
- RandomUser is an open-source, free API providing developers with randomly generated users to be used as placeholders for testing purposes.
- The API can return multiple results, as well as specify generated user details such as gender, email, image, username, address, title, first and last name, and more.
- More information on RandomUser can be found here.
Case Study
Setup RandomUser
Generate 10 users
Generate names
Create a df and save:
- Full name
- Gender
- City
- State
- DOB
- Picture
Setup
- To start using the API you can install the randomuser library running the pip install command.
- Load the necessary libraries.
from randomuser import RandomUser
import pandas as pd
Create RandomUser Object
= RandomUser() r
Generate Users
- Generate 10 random users and save to rand_list
= r.generate_users(10)
rand_list rand_list
Convert to df
- If it’s easier to read convert to df
= pd.DataFrame(rand_list)
blah blah
Get_full_name & Email
- The “Get Methods” functions, can generate the required parameters to construct a dataset.
- For example, to get full name, we call get_full_name() function.
= r.get_full_name()
name name
- Now that we know how to generate full names, let’s loop through all users and generate full name & email for each
# Create a blank list for users
= []
users for user in rand_list:
" ", user.get_email()})
users.append({user.get_full_name(), users
Generate DF
- We already created the loop to generate and extract some data
- Let’s create a function
get_users()
to generate the fields we need and to save the values in a df - We pass the function the number of users we want to generate
- Call the function
# Create a function that receives the number of users needed
def get_users(num):
# Create a blank list for users
= []
users for user in RandomUser.generate_users(num):
"Name":user.get_full_name(),"Gender":user.get_gender(),"City":user.get_city(),"State":user.get_state(),"Email":user.get_email(), "DOB":user.get_dob(),"Picture":user.get_picture()})
users.append({
return pd.DataFrame(users)
- Call the function using num = 10
- View DF
= get_users(10)
df1 df1